Tensorflow note
基本用法
- 起始节点
c = tf.Constant(tf.int32, shape=[None, 1], name="Constant") v = tf.Variable(...) # 运行中被更新 p = tf.placeholder(...)
- shape
[None, 784] # None代表第一纬度不确定,视输入而定, 用于不定batch输入 tf.reshape(x, [-1, 28, 28, 1]) # 第一个纬度根据计算得到。
- operation
tf.matmul() #矩阵乘法 tf.square() tf.log() tf.reduce_sum() tf.arg_max() tf.equal() tf.assign()
- 初始化
1、 简单初始化
# tf.initialize_all_variables() 已经被废弃 init = tf.global_variables_initializer() # 在session中,可以直接init.run() sess.run(init)
2、 复杂初始化
# 截断正态分布 tf.Variable(tf.truncated_normal(shape, stddev=0.1)) tf.randint(-1, 1) tf.uniform_random()
- 损失
# 交叉损失熵 # softmax is used to normalize all dimesion. y = tf.nn.softmax(tf.matmul(x, W) + b) cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) # y_hat(label) multiply log(y)
- 优化
optimizer = tf.train.GradientDescentOptimizer(0.01) train = optimizer.minimize(loss) _, loss = sess.run([train, loss], feed_dict={x: xx}) print(loss) # 运行中查看损失
- 评估模型 ```python tf.argmax(y, 1) # 在第二维度找最大值变为1, 如softmax后,每个纬度都有取值,找到最大值变为1, 第一维度用于batch
训练结果与标签值每个判断是否相等,得到的correct的形式类似于
[True, True, False, True]
correct = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
转换为准确率
cast用于把True变为1, False变为0
reduce_mean取平均值
accuracy = tf.reduce_mean(tf.cast(correct, “float”))
运行accuracy 的Graph
a = sess.run(accuracy, feed_dict={test_dict})
* Session 和 Graph
sess = tf.InteractiveSession() 直接成为默认的Session, 可以直接用op.run() 或 tensor.eval() 结束时必须使用 sess.close()
1、 正常情况下
```python
with tf.Session() as sess:
sess.run(...)
2、 默认session
sess = tf.Session()
with sess.as_default():
c.eval()
# 尽管调用完毕,但sess仍是默认Session(),必须显示调用sess.close()
保存和加载变量
saver = tf.train.Saver()
saver.save(self.sess, "./model.ckpt", global_step=1) # 目录./是很必要的,或者用os.path.join(...)
# 加载
self.saver.restore(self.sess, "./model.ckpt-1") # -1 是保存中指定的global_step
- 注:变量的name不能改变,在保存和加载的过程中。
模型
- CNN
```python
conv2d代表二维卷积网络(如图片),需要输入四个纬度的元素, 第一纬度为batch_size(无意义), 第二、三分别维宽和高,第四个纬度为每个元素的通道数,如黑白为1, 彩色为3.
stride为步长, 重点关注第二第三纬度。
padding为SAME: 输出与输入的形状(shape)相同
padding为VALID: 输出与输入通过公式计算: width= (28-5+2*0/1)+1=24,
卷积层
tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=”SAME”)
ksize代表卷积核的大小,本例为2*2,步长分别为2, 2
输出的大小为width/=2, height/=2
池化层
tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=”SAME”)
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool(h_conv1)
W_conv2 = …
## tensorboard
```python
# 设置图标中记录的名称和变量值。
tf.summary.scalar('loss', cross_entropy)
# merge所有的操作符
merged_summary_op = tf.summary.merge_all()
# 定义写入目录。
summary_writer = tf.summary.FileWriter("/tmp/mnist_logs", sess.graph)
# 运行merge操作符并写入。
summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y_: batch_ys})
summary_writer.add_summary(summary_str, i)
启动
tensorboard --logdir /tmp/mnist_logs
scope(variable/name)
- variable_scope
It is used to share variable by
get_variable
. ```python with tf.variable_scope(‘v_scope’) as scope1: Weights1 = tf.get_variable(‘Weights’, shape=[2,3])
下面来共享上面已经定义好的变量
with tf.variable_scope(‘v_scope’, reuse=True) as scope2: Weights2 = tf.get_variable(‘Weights’)
- name_scope
It is mainly used to create diffent variable with same name. `It will create a new name_scope, if the name has been existed.`e.g. `conv1_1`.
Usually every layer is a name_scope.
```python
with tf.name_scope('conv1') as scope:
weights1 = tf.Variable([1.0, 2.0], name='weights')
bias1 = tf.Variable([0.3], name='bias')
with tf.name_scope('conv2') as scope:
weights2 = tf.Variable([4.0, 2.0], name='weights')
bias2 = tf.Variable([0.33], name='bias')